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Operator upper bounds for Davis-Choi-Jensen’s
difference in Hilbert spaces

Silvestru Sever Dragomir1,2

Abstract. In this paper we obtain several operator inequalities pro-
viding upper bounds for the Davis-Choi-Jensen’s Difference

Φ(f (A))− f (Φ (A))

for any convex function f : I → R, any selfadjoint operator A in H with
the spectrum Sp (A) ⊂ I and any linear, positive and normalized map
Φ : B (H) → B (K) , where H and K are Hilbert spaces. Some examples
of convex and operator convex functions are also provided.

1. Introduction

Let H be a complex Hilbert space and B (H) , the Banach algebra of
bounded linear operators acting on H. We denote by Bh (H) the semi-space
of all selfadjoint operators in B (H) . We denote by B+ (H) the convex cone
of all positive operators on H and by B++ (H) the convex cone of all positive
definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [9, p. 18])
we can introduce the following definition.

Definition 1. A map Φ : B (H) → B (K) is linear if it is additive and
homogeneous, namely

Φ (λA+ µB) = λΦ (A) + µΦ (B)

for any λ, µ ∈ C and A, B ∈ B (H) . The linear map Φ : B (H) → B (K) is
positive if it preserves the operator order, i.e. if A ∈ B+ (H) then Φ (A) ∈
B+ (K) . We write Φ ∈ P [B (H) ,B (K)] . The linear map Φ : B (H) → B (K)
is normalized if it preserves the identity operator, i.e., Φ (1H) = 1K . We write
Φ ∈ PN [B (H) ,B (K)] .
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40 Operator upper bounds

We observe that a positive linear map Φ preserves the order relation,
namely

A ≤ B implies Φ (A) ≤ Φ (B)

and preserves the adjoint operation Φ (A∗) = Φ (A)∗.
If Φ ∈ PN [B (H) ,B (K)] and α1H ≤ A ≤ β1H , then α1K ≤ Φ (A) ≤ β1K .

If the map Ψ : B (H) → B (K) is linear, positive and Ψ(1H) ∈ B++ (K),
then by putting Φ = Ψ−1/2 (1H)ΨΨ−1/2 (1H) we get Φ ∈ PN [B (H) ,B (K)],
namely it is also normalized.

A real valued continuous function f on an interval I is said to be operator
convex (concave) on I if

f ((1− λ)A+ λB) ≤ (≥) (1− λ) f (A) + λf (B)

for all λ ∈ [0, 1] and for every selfadjoint operators A, B ∈ B (H) whose
spectra are contained in I.

The following Jensen’s type result is well known [9, p. 22]:

Theorem 1 (Davis-Choi-Jensen’s Inequality). Let f : I → R be an operator
convex function on the interval I and Φ ∈ PN [B (H) ,B (K)] , then for any
selfadjoint operator A whose spectrum is contained in I we have

(1) f (Φ (A)) ≤ Φ (f (A)) .

We observe that if Ψ ∈ P [B (H) ,B (K)] with Ψ(1H) ∈ B++ (K) , then
by taking Φ = Ψ−1/2 (1H)ΨΨ−1/2 (1H) in (1) we get

f
(
Ψ−1/2 (1H)Ψ (A)Ψ−1/2 (1H)

)
≤ Ψ−1/2 (1H)Ψ (f (A))Ψ−1/2 (1H) .

If we multiply both sides of this inequality by Ψ1/2 (1H) we get the following
Davis-Choi-Jensen’s inequality for general positive linear maps

(2) Ψ1/2 (1H) f
(
Ψ−1/2 (1H)Ψ (A)Ψ−1/2 (1H)

)
Ψ1/2 (1H) ≤ Ψ(f (A)) .

Let Cj ∈ B (H) , j = 1, ..., k be contractions with

(3)
k∑

j=1

C∗
jCj = 1H .

The map Φ : B (H) → B (H) defined by [9, p. 19]

Φ (A) :=

k∑
j=1

C∗
jACj

is a normalized positive linear map on B (H) .
For more results on inequlities for selfadjoint operators in Hilbert spaces,

see [2, 3, 6–8] and the references therein.
In this paper we obtain several operator inequalities providing upper

bounds for the Davis-Choi-Jensen’s Difference

Φ (f (A))− f (Φ (A))
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for any convex function f : I → R, any selfadjoint operator A in H with
the spectrum Sp (A) ⊂ I and any linear, positive and normalized map Φ :
B (H) → B (K) , where H and K are Hilbert spaces. Some examples of
convex and operator convex functions are also provided.

2. Main results

We use the following result that was obtained in [4].

Lemma 1. If f : [a, b] → R is a convex function on [a, b], then

0 ≤ (b− t) f (a) + (t− a) f (b)

b− a
− f (t)(4)

≤ (b− t) (t− a)
f ′
− (b)− f ′

+ (a)

b− a
≤ 1

4
(b− a)

[
f ′
− (b)− f ′

+ (a)
]

for any t ∈ [a, b] .
If the lateral derivatives f ′

− (b) and f ′
+ (a) are finite, then the second in-

equality and the constant 1/4 are sharp.

We have:

Theorem 2. Let f : [m,M ] → R be a convex function on [m,M ] and A a
selfadjoint operator with the spectrum Sp (A) ⊂ [m,M ].

If Φ ∈ PN [B (H) ,B (K)], then

Φ (f (A))− f (Φ (A))(5)

≤
f ′
− (M)− f ′

+ (m)

M −m
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1K .

Proof. Utilizing the continuous functional calculus for a selfadjoint operator
T with 0 ≤ T ≤ 1H and the convexity of f on [m,M ], we have

(6) f (m (1H − T ) +MT ) ≤ f (m) (1H − T ) + f (M)T

in the operator order.
If we take in (6)

0 ≤ T =
A−m1H
M −m

≤ 1H ,

then we get

f

(
m

(
1H − A−m1H

M −m

)
+M

A−m1H
M −m

)
(7)

≤ f (m)

(
1H − A−m1H

M −m

)
+ f (M)

A−m1H
M −m

.
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Observe that

m

(
1H − A−m1H

M −m

)
+M

A−m1H
M −m

=
m (M1H −A) +M (A−m1H)

M −m
= A

and

f (m)

(
1H − A−m1H

M −m

)
+ f (M)

A−m1H
M −m

=
f (m) (M1H −A) + f (M) (A−m1H)

M −m

and by (7) we get the following inequality of interest

(8) f (A) ≤ f (m) (M1H −A) + f (M) (A−m1H)

M −m
.

If we take the map Φ in (8), then we get

Φ (f (A)) ≤ Φ

[
f (m) (M1H −A) + f (M) (A−m1H)

M −m

]
=

f (m) Φ (M1H −A) + f (M) Φ (A−m1H)

M −m

=
f (m) (MΦ (1H)− Φ (A)) + f (M) (Φ (A)−mΦ (1H))

M −m

=
f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
,

which implies that

Φ (f (A))− f (Φ (A))(9)

≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A)) .

Since m1K ≤ Φ (A) ≤ M1K , then by using (4) for a = m, b = M and the
continuous functional calculus, we have

f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A))(10)

≤
f ′
− (M)− f ′

+ (m)

M −m
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1K .

By making use of (9) and (10) we get the desired result (5). □
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Corollary 1. Let f : [m,M ] → R be an operator convex function on [m,M ]
and A a selfadjoint operator with the spectrum Sp (A) ⊂ [m,M ] .

If Φ ∈ PN [B (H) ,B (K)] , then

0 ≤ Φ (f (A))− f (Φ (A))(11)

≤
f ′
− (M)− f ′

+ (m)

M −m
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1K .

We also have the following scalar inequality of interest:

Lemma 2. Let f : [a, b] → R be a convex function on [a, b] and t ∈ [0, 1] ,
then

2min {t, 1− t}
[
f (a) + f (b)

2
− f

(
a+ b

2

)]
(12)

≤ (1− t) f (a) + tf (b)− f ((1− t) a+ tb)

≤ 2max {t, 1− t}
[
f (a) + f (b)

2
− f

(
a+ b

2

)]
.

The proof follows, for instance, by Corollary 1 from [5] for n = 2, p1 =
1− t, p2 = t, t ∈ [0, 1] and x1 = a, x2 = b.

Theorem 3. Let f : [m,M ] → R be a convex function on [m,M ] and A a
selfadjoint operator with the spectrum Sp (A) ⊂ [m,M ] .

If Φ ∈ PN [B (H) ,B (K)], then

2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
(13)

×
(
1

2
(M −m) 1K −

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A))

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
and

2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
(14)

×
(
1

2
(M −m) 1K − Φ

(∣∣∣∣A− 1

2
(m+M) 1K

∣∣∣∣))
≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− Φ (f (A))
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≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m) 1K +Φ

(∣∣∣∣A− 1

2
(m+M) 1H

∣∣∣∣)) .

Proof. We have from (12) that

2

(
1

2
−
∣∣∣∣t− 1

2

∣∣∣∣) [
f (m) + f (M)

2
− f

(
m+M

2

)]
(15)

≤ (1− t) f (m) + tf (M)− f ((1− t)m+ tM)

≤ 2

(
1

2
+

∣∣∣∣t− 1

2

∣∣∣∣) [
f (m) + f (M)

2
− f

(
m+M

2

)]
,

for all t ∈ [0, 1] .
Utilizing the continuous functional calculus for a selfadjoint operator T

with 0 ≤ T ≤ 1H we get from (15) that

2

[
f (m) + f (M)

2
− f

(
m+M

2

)](
1

2
1H −

∣∣∣∣T − 1

2
1H

∣∣∣∣)(16)

≤ (1− T ) f (m) + Tf (M)− f ((1− T )m+ TM)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)](
1

2
1H +

∣∣∣∣T − 1

2
1H

∣∣∣∣) ,

in the operator order.
If we take in (16)

0 ≤ T =
A−m1H
M −m

≤ 1H ,

then, like in the proof of Theorem 2, we get

2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
(17)

×
(
1

2
(M −m) 1H −

∣∣∣∣A− 1

2
(m+M) 1H

∣∣∣∣)
≤ f (m) (M1H −A) + f (M) (A−m1H)

M −m
− f (A)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m) 1H +

∣∣∣∣A− 1

2
(m+M) 1H

∣∣∣∣) .

Since m1K ≤ Φ (A) ≤ M1K , then by writing the inequality (17) for Φ (A)
instead of A we get (13).
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If we take Φ in (17), then we get

2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
× Φ

(
1

2
(M −m) 1H −

∣∣∣∣A− 1

2
(m+M) 1H

∣∣∣∣)
≤ Φ

[
f (m) (M1H −A) + f (M) (A−m1H)

M −m

]
− Φf (A)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
× Φ

(
1

2
(M −m) 1H +

∣∣∣∣A− 1

2
(m+M) 1H

∣∣∣∣) ,

which is equivalent to (14). □

Corollary 2. Let f : [m,M ] → R be an operator convex function on [m,M ]
and A a selfadjoint operator with the spectrum Sp (A) ⊂ [m,M ] .

If Φ ∈ PN [B (H) ,B (K)], then

2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
(18)

×
(
1

2
(M −m) 1K − Φ

(∣∣∣∣A− 1

2
(m+M) 1H

∣∣∣∣))
≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− Φ (f (A))

≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A))

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣) .

We also have:

Corollary 3. Let f : [m,M ] → R be a convex function on [m,M ] and A a
selfadjoint operator with the spectrum Sp (A) ⊂ [m,M ] .

If Φ ∈ PN [B (H) ,B (K)], then

Φ (f (A))− f (Φ (A)) ≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
(19)

×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
1K .
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Proof. From (9) we have

Φ (f (A))− f (Φ (A))

≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A))

and from (14) we have

f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A))

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣) ,

which produce the desired result (19). □

Remark 1. If f : [m,M ] → R is an operator convex function on [m,M ],
A a selfadjoint operator with the spectrum Sp (A) ⊂ [m,M ] and Φ ∈
PN [B (H) ,B (K)], then

0 ≤ Φ (f (A))− f (Φ (A))(20)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
1K .

We also have [4]:

Lemma 3. Assume that f : [a, b] → R is absolutely continuous on [a, b]. If
f ′ is K-Lipschitzian on [a, b], then

|(1− t) f (a) + tf (b)− f ((1− t) a+ tb)|(21)

≤ 1

2
K (b− t) (t− a) ≤ 1

8
K (b− a)2

for all t ∈ [0, 1] .
The constants 1/2 and 1/8 are the best possible in (21).

Remark 2. If f : [a, b] → R is twice differentiable and f ′′ ∈ L∞ [a, b] , then

|(1− t) f (a) + tf (b)− f ((1− t) a+ tb)|(22)

≤ 1

2

∥∥f ′′∥∥
[a,b],∞ (b− t) (t− a) ≤ 1

8

∥∥f ′′∥∥
[a,b],∞ (b− a)2 ,

where ∥f ′′∥[a,b],∞ := essupt∈[a,b] |f ′′ (t)| < ∞. The constants 1/2 and 1/8 are
the best possible in (22).
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We have:

Theorem 4. Let f : [m,M ] → R be a twice differentiable convex function
on [m,M ] with ∥f ′′∥[m,M ],∞ := essupt∈[m,M ] f

′′ (t) < ∞ and A a selfadjoint
operator with the spectrum Sp (A) ⊂ [m,M ] . If Φ ∈ PN [B (H) ,B (K)], then

Φ (f (A))− f (Φ (A))(23)

≤ 1

2

∥∥f ′′∥∥
[m,M ],∞ (M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

8

∥∥f ′′∥∥
[m,M ],∞ (M −m)2 1K .

Proof. From (22) and the continuous functional calculus, we get

0 ≤ f (m) (M1H −B) + f (M) (B −m1H)

M −m
− f (B)(24)

≤ 1

2

∥∥f ′′∥∥
[m,M ],∞ (M1H −B) (B −m1H)

≤ 1

8

∥∥f ′′∥∥
[m,M ],∞ (M −m)2 1H

where B is a selfadjoint operator with the spectrum Sp (B) ⊂ [m,M ] .
If we use (24) for Φ (A) we get

0 ≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A))(25)

≤ 1

2

∥∥f ′′∥∥
[m,M ],∞ (M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

8

∥∥f ′′∥∥
[m,M ],∞ (M −m)2 1K .

Since

Φ (f (A))− f (Φ (A))

≤ f (m) (M1K − Φ (A)) + f (M) (Φ (A)−m1K)

M −m
− f (Φ (A)) ,

hence by (25) we get (23). □

Corollary 4. Let f : [m,M ] → R be an operator convex function on [m,M ]
and A a selfadjoint operator with the spectrum Sp (A) ⊂ [m,M ] .

If Φ ∈ PN [B (H) ,B (K)], then

0 ≤ Φ (f (A))− f (Φ (A))(26)

≤ 1

2

∥∥f ′′∥∥
[m,M ],∞ (M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

8

∥∥f ′′∥∥
[m,M ],∞ (M −m)2 1K .
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3. Some examples

We consider the exponential function f (x) = exp (αx) with α ∈ R \ {0} .
This function is convex but not operator convex on R. If A is selfadjoint
with Sp (A) ⊂ [m,M ] for some m < M and Φ ∈ PN [B (H) ,B (K)], then
by (5), (19) and (23) we have

Φ (exp (αA))− exp (αΦ (A))(27)

≤ α
exp (αM)− exp (αm)

M −m
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

4
α (M −m) [exp (αM)− exp (αm)] 1K ,

Φ (exp (αA))− exp (αΦ (A))(28)

≤ 2

[
exp (αm) + f (αM)

2
− exp

(
α
m+M

2

)]
×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ 2 (M −m)

[
exp (αm) + f (αM)

2
− exp

(
α
m+M

2

)]
1K

and

Φ (exp (αA))− exp (αΦ (A))(29)

≤ 1

2
α2

 exp (αM) if α > 0

exp (αm) if α < 0
× (M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

8
α2 (M −m)2

 exp (αM) if α > 0

exp (αm) if α < 0
× 1K .

The function f (x) = − lnx, x > 0 is operator convex on (0,∞) . If
A is selfadjoint with Sp (A) ⊂ [m,M ] for some 0 < m < M and Φ ∈
PN [B (H) ,B (K)], then by (11), (20) and (26) we have

0 ≤ ln (Φ (A))− Φ (ln (A))(30)

≤ 1

mM
(M1V − Φ (A)) (Φ (A)−m1K) ≤ 1

4mM
(M −m)2 1K ,

0 ≤ ln (Φ (A))− Φ (ln (A))(31)

≤ 2 ln

(
m+M

2
√
mM

)(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ 2 (M −m) ln

(
m+M

2
√
mM

)
1K
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and

0 ≤ ln (Φ (A))− Φ (ln (A))(32)

≤ 1

2m2
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

8m2
(M −m)2 1K .

We observe that if M > 2m then the bound in (30) is better than the one
from (32). If M < 2m, then the conclusion is the other way around.

The function f (x) = x lnx, x > 0 is operator convex on (0,∞) . If
A is selfadjoint with Sp (A) ⊂ [m,M ] for some 0 < m < M and Φ ∈
PN [B (H) ,B (K)], then by (11), (20) and (26) we have

0 ≤ Φ (A ln (A))− Φ (A) ln (Φ (A))(33)

≤ ln (M)− ln (m)

M −m
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

4
(M −m) [ln (M)− ln (m)] 1K ,

0 ≤ Φ (A ln (A))− Φ (A) ln (Φ (A))

(34)

≤ 2

[
m ln (m) +M ln (M)

2
−

(
m+M

2

)
ln

(
m+M

2

)]
×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ 2 (M −m)

[
m ln (m) +M ln (M)

2
−
(
m+M

2

)
ln

(
m+M

2

)]
1K

and

0 ≤ Φ (A ln (A))− Φ (A) ln (Φ (A))(35)

≤ 1

2m
(M1K − Φ (A)) (Φ (A)−m1K) ≤ 1

8m
(M −m)2 1K .

Consider the power function f (x) = xr, x ∈ (0,∞) and r a real number.
If r ∈ (−∞, 0] ∪ [1,∞), then f is convex and for r ∈ [−1, 0] ∪ [1, 2] is
operator convex. If we use the inequalities (5), (19) and (23) we have for
r ∈ (−∞, 0] ∪ [1,∞) that

Φ (Ar)− (Φ (A))r(36)

≤ r
M r−1 −mr−1

M −m
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

4
r (M −m)

(
M r−1 −mr−1

)
1K ,
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Φ (Ar)− (Φ (A))r(37)

≤ 2

[
mr +M r

2
−
(
m+M

2

)r]
×
(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ 2 (M −m)

[
mr +M r

2
−
(
m+M

2

)r]
1K

and

Φ (Ar)− (Φ (A))r(38)

≤ 1

2
r (r − 1)

 M r−2 for r ≥ 2

mr−2 for r ∈ (−∞, 0] ∪ [1, 2)

× (M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

8
r (r − 1) (M −m)2

 M r−2 for r ≥ 2

mr−2 for r ∈ (−∞, 0] ∪ [1, 2)
× 1K ,

where A is selfadjoint with Sp (A) ⊂ [m,M ] for some 0 < m < M and
Φ ∈ PN [B (H) ,B (K)].

If r ∈ [−1, 0] ∪ [1, 2] , then we also have 0 ≤ Φ (Ar) − (Φ (A))r in the
inequalities (36)-(38).

For r = −1 we have the inequalities

0 ≤ Φ
(
A−1

)
− (Φ (A))−1(39)

≤ M +m

M2m2
(M1K − Φ (A)) (Φ (A)−m1K)

≤ 1

4
(M −m)2

M +m

M2m2
1K ,

0 ≤ Φ
(
A−1

)
− (Φ (A))−1(40)

≤ (M −m)2

mM (m+M)

(
1

2
(M −m) 1K +

∣∣∣∣Φ (A)− 1

2
(m+M) 1K

∣∣∣∣)
≤ (M −m)3

mM (m+M)
1K

and

0 ≤ Φ
(
A−1

)
− (Φ (A))−1(41)

≤ 1

m3
(M1K − Φ (A)) (Φ (A)−m1K) ≤ 1

4m3
(M −m)2 1K ,

where A is selfadjoint with Sp (A) ⊂ [m,M ] for some 0 < m < M and
Φ ∈ PN [B (H) ,B (K)].
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4. Conclusion

In this paper we obtained several operator inequalities providing upper
bounds for the celebrated Davis-Choi-Jensen’s Difference for any convex
function f : I → R, any selfadjoint operator A in H with the spectrum
Sp (A) ⊂ I and any linear, positive and normalized map Φ : B (H) → B (K) ,
where H and K are Hilbert spaces. Some examples for fundamental convex
and operator convex functions of interest, to ilustrate the main results, were
also provided.
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