Operator upper bounds for Davis-Choi-Jensen's difference in Hilbert spaces

 $SIIVER$ SEVER DRAGOMIR^{1,2}

Abstract. In this paper we obtain several operator inequalities providing upper bounds for the Davis-Choi-Jensen's Difference

$$
\Phi\left(f\left(A\right)\right) - f\left(\Phi\left(A\right)\right)
$$

for any convex function $f: I \to \mathbb{R}$, any selfadjoint operator A in H with the spectrum $\text{Sp}(A) \subset I$ and any linear, positive and normalized map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$, where H and K are Hilbert spaces. Some examples of convex and operator convex functions are also provided.

1. INTRODUCTION

Let H be a complex Hilbert space and $\mathcal{B}(H)$, the Banach algebra of bounded linear operators acting on H. We denote by \mathcal{B}_h (H) the semi-space of all selfadjoint operators in $\mathcal{B}(H)$. We denote by $\mathcal{B}^+(H)$ the convex cone of all positive operators on H and by $\mathcal{B}^{++}(H)$ the convex cone of all positive definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [9, p. 18]) we can introduce the following definition.

Definition 1. A map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$ is linear if it is additive and homogeneous, namely

$$
\Phi(\lambda A + \mu B) = \lambda \Phi(A) + \mu \Phi(B)
$$

for any $\lambda, \mu \in \mathbb{C}$ and $A, B \in \mathcal{B}(H)$. The linear map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$ is positive if it preserves the operator order, i.e. if $A \in \mathcal{B}^+(H)$ then $\Phi(A) \in$ $\mathcal{B}^+(K)$. We write $\Phi \in \mathfrak{P}[\mathcal{B}(H), \mathcal{B}(K)]$. The linear map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$ is normalized if it preserves the identity operator, i.e., $\Phi(1_H) = 1_K$. We write $\Phi \in \mathfrak{P}_N \left[\mathcal{B} \left(H \right), \mathcal{B} \left(K \right) \right].$

²⁰²⁰ Mathematics Subject Classification. Primary: 47A63; Secondary: 47A99.

Key words and phrases. Selfadjoint bounded linear operators, Functions of operators, Operator convex functions, Jensen's operator inequality, Linear, positive and normalized map.

Full paper. Received 29 May 2023, accepted 7 March 2024, available online 19 March 2024.

We observe that a positive linear map Φ preserves the *order relation*, namely

$$
A \le B \text{ implies } \Phi(A) \le \Phi(B)
$$

and preserves the adjoint operation $\Phi(A^*) = \Phi(A)^*$.

If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$ and $\alpha 1_H \leq A \leq \beta 1_H$, then $\alpha 1_K \leq \Phi(A) \leq \beta 1_K$. If the map $\Psi : \mathcal{B}(H) \to \mathcal{B}(K)$ is linear, positive and $\Psi(1_H) \in \mathcal{B}^{++}(K)$, then by putting $\Phi = \Psi^{-1/2} (1_H) \Psi \Psi^{-1/2} (1_H)$ we get $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)],$

namely it is also normalized. A real valued continuous function f on an interval I is said to be *operator* convex (concave) on I if

$$
f((1 - \lambda) A + \lambda B) \leq (\geq) (1 - \lambda) f(A) + \lambda f(B)
$$

for all $\lambda \in [0,1]$ and for every selfadjoint operators $A, B \in \mathcal{B}(H)$ whose spectra are contained in I.

The following Jensen's type result is well known [9, p. 22]:

Theorem 1 (Davis-Choi-Jensen's Inequality). Let $f: I \to \mathbb{R}$ be an operator convex function on the interval I and $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then for any selfadjoint operator A whose spectrum is contained in I we have

(1)
$$
f(\Phi(A)) \leq \Phi(f(A)).
$$

We observe that if $\Psi \in \mathfrak{P}[\mathcal{B}(H), \mathcal{B}(K)]$ with $\Psi(1_H) \in \mathcal{B}^{++}(K)$, then by taking $\Phi = \Psi^{-1/2} (1_H) \Psi \Psi^{-1/2} (1_H)$ in (1) we get

$$
f\left(\Psi^{-1/2}\left(1_H\right)\Psi\left(A\right)\Psi^{-1/2}\left(1_H\right)\right)\leq \Psi^{-1/2}\left(1_H\right)\Psi\left(f\left(A\right)\right)\Psi^{-1/2}\left(1_H\right).
$$

If we multiply both sides of this inequality by $\Psi^{1/2}(1_H)$ we get the following Davis-Choi-Jensen's inequality for general positive linear maps

(2)
$$
\Psi^{1/2}(\mathbb{1}_H) f\left(\Psi^{-1/2}(\mathbb{1}_H) \Psi(A) \Psi^{-1/2}(\mathbb{1}_H)\right) \Psi^{1/2}(\mathbb{1}_H) \leq \Psi(f(A)).
$$

Let $C_i \in \mathcal{B}(H)$, $j = 1, ..., k$ be contractions with

(3)
$$
\sum_{j=1}^{k} C_j^* C_j = 1_H.
$$

The map $\Phi : \mathcal{B}(H) \to \mathcal{B}(H)$ defined by [9, p. 19]

$$
\Phi\left(A\right) := \sum_{j=1}^{k} C_j^* A C_j
$$

is a normalized positive linear map on $\mathcal{B}(H)$.

For more results on inequlities for selfadjoint operators in Hilbert spaces, see [2, 3, 6–8] and the references therein.

In this paper we obtain several operator inequalities providing upper bounds for the Davis-Choi-Jensen's Difference

$$
\Phi\left(f\left(A\right)\right) - f\left(\Phi\left(A\right)\right)
$$

for any convex function $f: I \to \mathbb{R}$, any selfadjoint operator A in H with the spectrum $Sp(A) \subset I$ and any linear, positive and normalized map Φ : $\mathcal{B}(H) \to \mathcal{B}(K)$, where H and K are Hilbert spaces. Some examples of convex and operator convex functions are also provided.

2. Main results

We use the following result that was obtained in [4].

Lemma 1. If $f : [a, b] \to \mathbb{R}$ is a convex function on [a, b], then

(4)
$$
0 \le \frac{(b-t) f (a) + (t-a) f (b)}{b-a} - f (t)
$$

$$
\le (b-t) (t-a) \frac{f'(b) - f'_+(a)}{b-a} \le \frac{1}{4} (b-a) [f'_-(b) - f'_+(a)]
$$

for any $t \in [a, b]$.

If the lateral derivatives f'_{-} (b) and f'_{+} (a) are finite, then the second inequality and the constant 1/4 are sharp.

We have:

Theorem 2. Let $f : [m, M] \to \mathbb{R}$ be a convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $Sp(A) \subset [m, M]$.

If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then

(5)
$$
\Phi(f(A)) - f(\Phi(A))
$$

\n
$$
\leq \frac{f'_{-}(M) - f'_{+}(m)}{M - m} (M1_{K} - \Phi(A)) (\Phi(A) - m1_{K})
$$

\n
$$
\leq \frac{1}{4} (M - m) [f'_{-}(M) - f'_{+}(m)] 1_{K}.
$$

Proof. Utilizing the continuous functional calculus for a selfadjoint operator T with $0 \leq T \leq 1_H$ and the convexity of f on $[m, M]$, we have

(6)
$$
f (m (1_H - T) + MT) \le f (m) (1_H - T) + f (M) T
$$

in the operator order.

If we take in (6)

$$
0 \leq T = \frac{A - m1_H}{M - m} \leq 1_H,
$$

then we get

(7)
$$
f\left(m\left(1_H - \frac{A - m1_H}{M - m}\right) + M\frac{A - m1_H}{M - m}\right) \le f(m)\left(1_H - \frac{A - m1_H}{M - m}\right) + f(M)\frac{A - m1_H}{M - m}.
$$

Observe that

$$
m\left(1_H - \frac{A - m1_H}{M - m}\right) + M\frac{A - m1_H}{M - m}
$$

$$
= \frac{m\left(M1_H - A\right) + M\left(A - m1_H\right)}{M - m} = A
$$

and

$$
f(m)\left(1_H - \frac{A - m1_H}{M - m}\right) + f(M)\frac{A - m1_H}{M - m}
$$

=
$$
\frac{f(m)\left(M1_H - A\right) + f(M)\left(A - m1_H\right)}{M - m}
$$

and by (7) we get the following inequality of interest

(8)
$$
f(A) \leq \frac{f(m) (M1_H - A) + f(M) (A - m1_H)}{M - m}.
$$

If we take the map Φ in (8), then we get

$$
\Phi(f(A)) \leq \Phi \left[\frac{f(m) (M1_H - A) + f(M) (A - m1_H)}{M - m} \right]
$$

=
$$
\frac{f(m) \Phi(M1_H - A) + f(M) \Phi(A - m1_H)}{M - m}
$$

=
$$
\frac{f(m) (M\Phi(1_H) - \Phi(A)) + f(M) (\Phi(A) - m\Phi(1_H))}{M - m}
$$

=
$$
\frac{f(m) (M1_K - \Phi(A)) + f(M) (\Phi(A) - m1_K)}{M - m},
$$

which implies that

(9)
$$
\Phi(f(A)) - f(\Phi(A))
$$

$$
\leq \frac{f(m) (M1_K - \Phi(A)) + f(M) (\Phi(A) - m1_K)}{M - m} - f(\Phi(A)).
$$

Since $m1_K \leq \Phi(A) \leq M1_K$, then by using (4) for $a = m$, $b = M$ and the continuous functional calculus, we have

(10)
$$
\frac{f(m) (M1_K - \Phi(A)) + f(M) (\Phi(A) - m1_K)}{M - m} - f(\Phi(A))
$$

$$
\leq \frac{f'_-(M) - f'_+(m)}{M - m} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

$$
\leq \frac{1}{4} (M - m) [f'_-(M) - f'_+(m)] 1_K.
$$

By making use of (9) and (10) we get the desired result (5). \Box

Corollary 1. Let $f : [m, M] \to \mathbb{R}$ be an operator convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $Sp(A) \subset [m, M]$. If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then

(11)
$$
0 \leq \Phi(f(A)) - f(\Phi(A))
$$

\n
$$
\leq \frac{f'_{-}(M) - f'_{+}(m)}{M - m} (M1_{K} - \Phi(A)) (\Phi(A) - m1_{K})
$$

\n
$$
\leq \frac{1}{4} (M - m) [f'_{-}(M) - f'_{+}(m)] 1_{K}.
$$

We also have the following scalar inequality of interest:

Lemma 2. Let $f : [a, b] \to \mathbb{R}$ be a convex function on [a, b] and $t \in [0, 1]$, then

(12)
$$
2 \min \{t, 1 - t\} \left[\frac{f(a) + f(b)}{2} - f\left(\frac{a+b}{2}\right) \right] \le (1-t) f(a) + tf(b) - f((1-t)a + tb) \le 2 \max \{t, 1-t\} \left[\frac{f(a) + f(b)}{2} - f\left(\frac{a+b}{2}\right) \right].
$$

The proof follows, for instance, by Corollary 1 from [5] for $n = 2$, $p_1 =$ $1-t$, $p_2 = t$, $t \in [0, 1]$ and $x_1 = a$, $x_2 = b$.

Theorem 3. Let $f : [m, M] \to \mathbb{R}$ be a convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $Sp(A) \subset [m, M]$.

If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then

(13)
$$
2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_K - \left|\Phi(A) - \frac{1}{2}(m+M)1_K\right|\right) \le \frac{f(m)(M1_K - \Phi(A)) + f(M)(\Phi(A) - m1_K)}{M-m} - f(\Phi(A)) \le 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_K + \left|\Phi(A) - \frac{1}{2}(m+M)1_K\right|\right)
$$

and

(14)
$$
2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_K - \Phi\left(\left|A - \frac{1}{2}(m+M)1_K\right|\right)\right) \le \frac{f(m)(M1_K - \Phi(A)) + f(M)(\Phi(A) - m1_K)}{M-m} - \Phi\left(f(A)\right)
$$

$$
\leq 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_K + \Phi\left(\left|A - \frac{1}{2}(m+M)1_H\right|\right)\right).
$$

Proof. We have from (12) that

(15)
$$
2\left(\frac{1}{2} - \left|t - \frac{1}{2}\right|\right) \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right]
$$

$$
\leq (1-t)f(m) + tf(M) - f((1-t)m + tM)
$$

$$
\leq 2\left(\frac{1}{2} + \left|t - \frac{1}{2}\right|\right) \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right],
$$

for all $t \in [0, 1]$.

Utilizing the continuous functional calculus for a selfadjoint operator T with $0 \le T \le 1_H$ we get from (15) that

(16)
$$
2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \left(\frac{1}{2}1_H - \left|T - \frac{1}{2}1_H\right|\right) \n\leq (1-T) f(m) + Tf(M) - f((1-T) m + TM) \n\leq 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \left(\frac{1}{2}1_H + \left|T - \frac{1}{2}1_H\right|\right),
$$

in the operator order.

If we take in (16)

$$
0 \leq T = \frac{A - m1_H}{M - m} \leq 1_H,
$$

then, like in the proof of Theorem 2, we get

(17)
$$
2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_H - \left|A - \frac{1}{2}(m+M)1_H\right|\right) \le \frac{f(m)(M1_H - A) + f(M)(A - m1_H)}{M - m} - f(A) \le 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_H + \left|A - \frac{1}{2}(m+M)1_H\right|\right).
$$

Since $m1_K \leq \Phi(A) \leq M1_K$, then by writing the inequality (17) for $\Phi(A)$ instead of A we get (13) .

If we take Φ in (17), then we get

$$
2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right]
$$

\$\times \Phi\left(\frac{1}{2}(M-m)1_H - \left|A-\frac{1}{2}(m+M)1_H\right|\right)\$
\$\le \Phi\left[\frac{f(m)(M1_H-A)+f(M)(A-m1_H)}{M-m}\right] - \Phi f(A)\$
\$\le 2\left[\frac{f(m)+f(M)}{2}-f\left(\frac{m+M}{2}\right)\right]\$
\$\times \Phi\left(\frac{1}{2}(M-m)1_H + \left|A-\frac{1}{2}(m+M)1_H\right|\right),\$

which is equivalent to (14) .

Corollary 2. Let $f : [m, M] \to \mathbb{R}$ be an operator convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $Sp(A) \subset [m, M]$. If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)],$ then

(18)
$$
2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_K - \Phi\left(\left|A - \frac{1}{2}(m+M)1_H\right|\right)\right) \le \frac{f(m)(M1_K - \Phi(A)) + f(M)(\Phi(A) - m1_K)}{M-m} - \Phi(f(A)) \le \frac{f(m)(M1_K - \Phi(A)) + f(M)(\Phi(A) - m1_K)}{M-m} - f(\Phi(A)) \le 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_K + \left|\Phi(A) - \frac{1}{2}(m+M)1_K\right|\right).
$$

We also have:

Corollary 3. Let $f : [m, M] \to \mathbb{R}$ be a convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $Sp(A) \subset [m, M]$.

If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then

(19)
$$
\Phi(f(A)) - f(\Phi(A)) \le 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right] \times \left(\frac{1}{2}(M-m)1_K + \left|\Phi(A) - \frac{1}{2}(m+M)1_K\right|\right) \le 2(M-m)\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right]1_K.
$$

Proof. From (9) we have

$$
\Phi(f(A)) - f(\Phi(A))
$$

\n
$$
\leq \frac{f(m) (M1_K - \Phi(A)) + f(M) (\Phi(A) - m1_K)}{M - m} - f(\Phi(A))
$$

and from (14) we have

$$
\frac{f(m) (M1_K - \Phi(A)) + f(M) (\Phi(A) - m1_K)}{M - m} - f(\Phi(A))
$$

\n
$$
\leq 2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right) \right]
$$

\n
$$
\times \left(\frac{1}{2} (M - m) 1_K + \left| \Phi(A) - \frac{1}{2} (m + M) 1_K \right| \right),
$$

which produce the desired result (19). \Box

Remark 1. If $f : [m, M] \to \mathbb{R}$ is an operator convex function on $[m, M]$, A a selfadjoint operator with the spectrum $Sp(A) \subset [m, M]$ and $\Phi \in$ $\mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then

(20)
$$
0 \leq \Phi(f(A)) - f(\Phi(A))
$$

\n
$$
\leq 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right]
$$

\n
$$
\times \left(\frac{1}{2}(M-m)1_K + \left|\Phi(A) - \frac{1}{2}(m+M)1_K\right|\right)
$$

\n
$$
\leq 2(M-m)\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right)\right]1_K.
$$

We also have [4]:

Lemma 3. Assume that $f : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b]. If f' is K-Lipschitzian on $[a, b]$, then

(21)
$$
|(1-t) f (a) + tf (b) - f ((1-t) a + tb)|
$$

$$
\leq \frac{1}{2} K (b-t) (t-a) \leq \frac{1}{8} K (b-a)^2
$$

for all $t \in [0,1]$.

The constants $1/2$ and $1/8$ are the best possible in (21) .

Remark 2. If $f : [a, b] \to \mathbb{R}$ is twice differentiable and $f'' \in L_{\infty}[a, b]$, then (22) $|(1-t) f (a) + tf (b) - f ((1-t) a + tb)|$ $\leq \frac{1}{2}$ 2 $||f''||_{[a,b],\infty}$ $(b - t)$ $(t - a) \leq \frac{1}{8}$ 8 $||f''||_{[a,b],\infty} (b-a)^2,$

where $||f''||_{[a,b],\infty} := \operatorname{essup}_{t \in [a,b]} |f''(t)| < \infty$. The constants 1/2 and 1/8 are the best possible in (22).

We have:

Theorem 4. Let $f : [m, M] \to \mathbb{R}$ be a twice differentiable convex function on $[m, M]$ with $||f''||_{[m, M], \infty} := \text{essup}_{t \in [m, M]} f''(t) < \infty$ and A a selfadjoint operator with the spectrum $\text{Sp}(A) \subset [m, M]$. If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then

(23)
$$
\Phi(f(A)) - f(\Phi(A))
$$

\n
$$
\leq \frac{1}{2} ||f''||_{[m,M],\infty} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

\n
$$
\leq \frac{1}{8} ||f''||_{[m,M],\infty} (M - m)^2 1_K.
$$

Proof. From (22) and the continuous functional calculus, we get

(24)
$$
0 \le \frac{f(m) (M1_H - B) + f(M) (B - m1_H)}{M - m} - f(B)
$$

$$
\le \frac{1}{2} ||f''||_{[m,M],\infty} (M1_H - B) (B - m1_H)
$$

$$
\le \frac{1}{8} ||f''||_{[m,M],\infty} (M - m)^2 1_H
$$

where B is a selfadjoint operator with the spectrum $Sp(B) \subset [m, M]$.

If we use (24) for $\Phi(A)$ we get

(25)
$$
0 \le \frac{f(m) (M1_K - \Phi(A)) + f(M) (\Phi(A) - m1_K)}{M - m} - f(\Phi(A))
$$

$$
\le \frac{1}{2} ||f''||_{[m,M],\infty} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

$$
\le \frac{1}{8} ||f''||_{[m,M],\infty} (M - m)^2 1_K.
$$

Since

$$
\Phi(f(A)) - f(\Phi(A)) \leq \frac{f(m)(M1_K - \Phi(A)) + f(M)(\Phi(A) - m1_K)}{M - m} - f(\Phi(A)),
$$

hence by (25) we get (23) .

Corollary 4. Let $f : [m, M] \to \mathbb{R}$ be an operator convex function on $[m, M]$ and A a selfadjoint operator with the spectrum $Sp(A) \subset [m, M]$. If $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then

(26)
$$
0 \le \Phi(f(A)) - f(\Phi(A))
$$

\n
$$
\le \frac{1}{2} ||f''||_{[m,M],\infty} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

\n
$$
\le \frac{1}{8} ||f''||_{[m,M],\infty} (M - m)^2 1_K.
$$

3. Some examples

We consider the exponential function $f(x) = \exp(\alpha x)$ with $\alpha \in \mathbb{R} \setminus \{0\}$. This function is convex but not operator convex on \mathbb{R} . If A is selfadjoint with $Sp(A) \subset [m, M]$ for some $m \lt M$ and $\Phi \in \mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then by (5) , (19) and (23) we have

(27)
$$
\Phi (\exp (\alpha A)) - \exp (\alpha \Phi (A))
$$

\n
$$
\leq \alpha \frac{\exp (\alpha M) - \exp (\alpha m)}{M - m} (M1_K - \Phi (A)) (\Phi (A) - m1_K)
$$

\n
$$
\leq \frac{1}{4} \alpha (M - m) [\exp (\alpha M) - \exp (\alpha m)] 1_K,
$$

(28)
$$
\Phi (\exp (\alpha A)) - \exp (\alpha \Phi (A))
$$

\n
$$
\leq 2 \left[\frac{\exp (\alpha m) + f (\alpha M)}{2} - \exp \left(\alpha \frac{m+M}{2} \right) \right]
$$

\n
$$
\times \left(\frac{1}{2} (M-m) 1_K + \left| \Phi (A) - \frac{1}{2} (m+M) 1_K \right| \right)
$$

\n
$$
\leq 2 (M-m) \left[\frac{\exp (\alpha m) + f (\alpha M)}{2} - \exp \left(\alpha \frac{m+M}{2} \right) \right] 1_K
$$

and

(29)
$$
\Phi(\exp(\alpha A)) - \exp(\alpha \Phi(A))
$$

\n
$$
\leq \frac{1}{2}\alpha^2 \begin{cases} \exp(\alpha M) & \text{if } \alpha > 0 \\ \exp(\alpha m) & \text{if } \alpha < 0 \end{cases} \times (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

\n
$$
\leq \frac{1}{8}\alpha^2 (M - m)^2 \begin{cases} \exp(\alpha M) & \text{if } \alpha > 0 \\ \exp(\alpha m) & \text{if } \alpha < 0 \end{cases} \times 1_K.
$$

The function $f(x) = -\ln x, x > 0$ is operator convex on $(0, \infty)$. If A is selfadjoint with $Sp(A) \subset [m, M]$ for some $0 < m < M$ and $\Phi \in$ $\mathfrak{P}_N [\mathcal{B}(H), \mathcal{B}(K)]$, then by (11), (20) and (26) we have

(30)
$$
0 \le \ln (\Phi(A)) - \Phi(\ln(A))
$$

 $\le \frac{1}{mM} (M1_V - \Phi(A)) (\Phi(A) - m1_K) \le \frac{1}{4mM} (M - m)^2 1_K,$

(31)
$$
0 \leq \ln (\Phi(A)) - \Phi(\ln(A))
$$

\n
$$
\leq 2 \ln \left(\frac{m+M}{2\sqrt{mM}} \right) \left(\frac{1}{2} (M-m) 1_K + \left| \Phi(A) - \frac{1}{2} (m+M) 1_K \right| \right)
$$

\n
$$
\leq 2 (M-m) \ln \left(\frac{m+M}{2\sqrt{mM}} \right) 1_K
$$

and

(32)
$$
0 \le \ln (\Phi(A)) - \Phi(\ln(A))
$$

$$
\le \frac{1}{2m^2} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

$$
\le \frac{1}{8m^2} (M - m)^2 1_K.
$$

We observe that if $M > 2m$ then the bound in (30) is better than the one from (32) . If $M < 2m$, then the conclusion is the other way around.

The function $f(x) = x \ln x$, $x > 0$ is operator convex on $(0, \infty)$. If A is selfadjoint with $Sp(A) \subset [m, M]$ for some $0 \lt m \lt M$ and $\Phi \in$ $\mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then by (11), (20) and (26) we have

(33)
$$
0 \le \Phi(A \ln(A)) - \Phi(A) \ln(\Phi(A))
$$

$$
\le \frac{\ln(M) - \ln(m)}{M - m} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

$$
\le \frac{1}{4} (M - m) [\ln(M) - \ln(m)] 1_K,
$$

(34)

$$
0 \leq \Phi(A \ln(A)) - \Phi(A) \ln(\Phi(A))
$$

\n
$$
\leq 2 \left[\frac{m \ln(m) + M \ln(M)}{2} - \left(\frac{m+M}{2} \right) \ln \left(\frac{m+M}{2} \right) \right]
$$

\n
$$
\times \left(\frac{1}{2} (M-m) 1_K + \left| \Phi(A) - \frac{1}{2} (m+M) 1_K \right| \right)
$$

\n
$$
\leq 2 (M-m) \left[\frac{m \ln(m) + M \ln(M)}{2} - \left(\frac{m+M}{2} \right) \ln \left(\frac{m+M}{2} \right) \right] 1_K
$$

and

(35)
$$
0 \le \Phi(A \ln(A)) - \Phi(A) \ln(\Phi(A))
$$

$$
\le \frac{1}{2m} (M1_K - \Phi(A)) (\Phi(A) - m1_K) \le \frac{1}{8m} (M - m)^2 1_K.
$$

Consider the power function $f(x) = x^r, x \in (0, \infty)$ and r a real number. If $r \in (-\infty, 0] \cup [1, \infty)$, then f is convex and for $r \in [-1, 0] \cup [1, 2]$ is operator convex. If we use the inequalities (5) , (19) and (23) we have for $r \in (-\infty, 0] \cup [1, \infty)$ that

(36)
$$
\Phi(A^r) - (\Phi(A))^r
$$

\n
$$
\leq r \frac{M^{r-1} - m^{r-1}}{M - m} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

\n
$$
\leq \frac{1}{4} r (M - m) (M^{r-1} - m^{r-1}) 1_K,
$$

(37)

37)
\n
$$
\Phi(A^r) - (\Phi(A))^r
$$
\n
$$
\leq 2\left[\frac{m^r + M^r}{2} - \left(\frac{m+M}{2}\right)^r\right]
$$
\n
$$
\times \left(\frac{1}{2}(M-m)1_K + \left|\Phi(A) - \frac{1}{2}(m+M)1_K\right|\right)
$$
\n
$$
\leq 2(M-m)\left[\frac{m^r + M^r}{2} - \left(\frac{m+M}{2}\right)^r\right]1_K
$$

and

(38)
$$
\Phi(A^r) - (\Phi(A))^r
$$

\n
$$
\leq \frac{1}{2}r(r-1)\begin{cases} M^{r-2} \text{ for } r \geq 2\\ m^{r-2} \text{ for } r \in (-\infty, 0] \cup [1, 2) \end{cases}
$$

\n
$$
\times (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

\n
$$
\leq \frac{1}{8}r(r-1)(M-m)^2 \begin{cases} M^{r-2} \text{ for } r \geq 2\\ m^{r-2} \text{ for } r \in (-\infty, 0] \cup [1, 2) \end{cases}
$$

where A is selfadjoint with $Sp(A) \subset [m, M]$ for some $0 < m < M$ and $\Phi \in \mathfrak{P}_N \left[\mathcal{B} \left(H \right), \mathcal{B} \left(K \right) \right].$

If $r \in [-1,0] \cup [1,2]$, then we also have $0 \leq \Phi(A^r) - (\Phi(A))^r$ in the inequalities (36)-(38).

For $r = -1$ we have the inequalities

(39)
$$
0 \le \Phi(A^{-1}) - (\Phi(A))^{-1}
$$

$$
\le \frac{M+m}{M^2m^2} (M1_K - \Phi(A)) (\Phi(A) - m1_K)
$$

$$
\le \frac{1}{4} (M-m)^2 \frac{M+m}{M^2m^2} 1_K,
$$

(40)
$$
0 \le \Phi(A^{-1}) - (\Phi(A))^{-1}
$$

\n
$$
\le \frac{(M-m)^2}{mM(m+M)} \left(\frac{1}{2} (M-m) 1_K + \left| \Phi(A) - \frac{1}{2} (m+M) 1_K \right| \right)
$$

\n
$$
\le \frac{(M-m)^3}{mM(m+M)} 1_K
$$

and

(41)
$$
0 \le \Phi(A^{-1}) - (\Phi(A))^{-1}
$$

$$
\le \frac{1}{m^3} (M1_K - \Phi(A)) (\Phi(A) - m1_K) \le \frac{1}{4m^3} (M - m)^2 1_K,
$$

where A is selfadjoint with $Sp(A) \subset [m, M]$ for some $0 < m < M$ and $\Phi \in \mathfrak{P}_N \left[\mathcal{B} \left(H \right), \mathcal{B} \left(K \right) \right].$

4. Conclusion

In this paper we obtained several operator inequalities providing upper bounds for the celebrated Davis-Choi-Jensen's Difference for any convex function $f: I \to \mathbb{R}$, any selfadjoint operator A in H with the spectrum $\text{Sp}(A) \subset I$ and any linear, positive and normalized map $\Phi : \mathcal{B}(H) \to \mathcal{B}(K)$, where H and K are Hilbert spaces. Some examples for fundamental convex and operator convex functions of interest, to ilustrate the main results, were also provided.

REFERENCES

- [1] M.D. Choi, Positive linear maps on C^{*}-algebras, Canadian Journal of Mathematics, 24 (1972), 520–529.
- [2] S.S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, Journal of Inequalities and Applications, 2010 (2010), Article ID: 496821, 15 pages.
- [3] S.S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, New York, 2012.
- [4] S.S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities, Bulletin of the Australian Mathematical Society, 78 (2) (2008), 225–248.
- [5] S.S. Dragomir, Bounds for the normalised Jensen functional, Bulletin of the Australian Mathematical Society, 74 (3) (2006), 471–478.
- [6] S.S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, New York, 2012.
- [7] S.S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Applied Mathematics and Computation, 218 (3) (2011), 766–772.
- [8] S.S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps, Spec. Matrices 7 (2019), 38–51. Preprint RGMIA Res. Rep. Coll. 19 (2016), Article 80. [Online http://rgmia.org/papers/v19/v19a80.pdf]
- [9] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond-Pečarić Method in Operator Inequalities : Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monographs in Inequalities 1, Element, Zagreb, 2005.

Silvestru Sever Dragomir ¹Applied Mathematics Research Group, ISILC Victoria University, PO Box 14428 Melbourne City, MC 8001 **AUSTRALIA** 2 School of Computer Science & Applied Mathematics University of the Witwatersrand, Private Bag 3 JOHANNESBURG 2050 SOUTH AFRICA E-mail address: sever.dragomir@ajmaa.org